Compositional Data

John Aitchison

What is a <u>domain</u>?

Now for two variables

If the two variables are constrained to be **positive** real numbers, then you only get to use a portion of the real plane:

Now for two variables

If the two variables are constrained to be **positive** real numbers, then you only get to use a portion of the real plane:

So, what is a <u>composition</u>?

• The variables you're measuring (components) all belong to \mathbb{R}_+ and have the same units or on the same measurement scale

So, what is a <u>composition</u>?

- The variables you're measuring (components) all belong to \mathbb{R}_+ and have the same units or on the same measurement scale
- You're not interested in the absolute abundance of any of the components—only the *relative abundances*, or proportions of a whole

So, what is a <u>composition</u>?

- The variables you're measuring (components) all belong to \mathbb{R}_+ and have the same units or on the same measurement scale
- You're not interested in the absolute abundance of any of the components—only the *relative abundances*, or proportions of a whole
- All compositions sum to a constant – e.g. 100%, or 1

Examples of compositions

- Geochemical compositions of rocks
 - e.g. wt. % oxides, but not ppm trace elements
 - Modal abundances: cpx/plag/amph/ol
- Sediment grain sizes or compositions
 - e.g. sand/silt/clay, quartz/feldspar/lithics
- Isotopic compositions

- ²⁰⁴Pb/²⁰⁶Pb/²⁰⁷Pb/²⁰⁸Pb, ²³⁴U/²³⁵U/²³⁸U

The simplex

However, we usually measure each of our variables in R₊.

Examples include point-counts of minerals, ion beam currents, etc.

The simplex

The measured variables can also be represented by a vector from the origin to the coordinates of the measurement.

This vector is called a **basis**.

0.5

The (1D) simplex:

Anorthite - Diopside System

Ternary plots

Express relative proportions of three components in a 2D space they are a simplex.

Each vertex corresponds to a 'pure' end-member composition.

In the middle of the plot, the closer you are to a vertex, the greater the relative proportion of that component.

Ternary plots

Ternary plots do not need to plot the whole of compositional data space—you can zoom in to better display data.

(Quad-) Ternary Plots(?)

To visualize more than three components and stay on a (2D) page or screen, you can link multiple ternary plots together along their edges.

Compositional data presents unique problems.

 Because we recognize the compositional nature of our geochemical and geological datasets, we usually perform some kind of normalization when reporting data and performing statistical analysis.

Compositional data presents unique problems.

- Because we recognize the compositional nature of our geochemical and geological datasets, we usually perform some kind of normalization when reporting data and performing statistical analysis.
 - Weight % oxides, isotope ratios, deviations from a standard expressed in δ or ϵ notation

Compositional data presents unique problems.

 However, all of these approaches have drawbacks when you go to evaluate a mean and standard deviation/error/covariance matrix.

А	В	С	B/A	C/A	A/B	B/C
3.8816	2.2237	3.5034	0.5729	0.9026	1.7456	0.6347
3.4189	3.6334	4.4136	1.0627	1.2909	0.9410	0.8232
1.8736	3.4878	6.2357	1.8615	3.3282	0.5372	0.5593
2.7661	8.5963	4.0573	3.1077	1.4668	0.3218	2.1187
2.7887	3.5317	7.1290	1.2664	2.5564	0.7896	0.4954
2.2993	2.3495	6.8411	1.0218	2.9753	0.9786	0.3434
6.9564	8.9176	1.8384	1.2819	0.2643	0.7801	4.8507
1.9362	7.4160	2.3421	3.8302	1.2096	0.2611	3.1664
2.3554	3.5661	2.7637	1.5140	1.1733	0.6605	1.2903
2.1014	1.8837	3.3307	0.8964	1.5850	1.1156	0.5656

А	В	С		B/A	C/A	A/B	B/C
3.8816	2.2237	3.5034		0.5729	0.9026	1.7456	0.6347
3.4189	3.6334	4.4136		1.0627	1.2909	0.9410	0.8232
1.8736	3.4878	6.2357		1.8615	3.3282	0.5372	0.5593
2.7661	8.5963	4.0573		3.1077	1.4668	0.3218	2.1187
2.7887	3.5317	7.1290		1.2664	2.5564	0.7896	0.4954
2.2993	2.3495	6.8411		1.0218	2.9753	0.9786	0.3434
6.9564	8.9176	1.8384		1.2819	0.2643	0.7801	4.8507
1.9362	7.4160	2.3421		3.8302	1.2096	0.2611	3.1664
2.3554	3.5661	2.7637		1.5140	1.1733	0.6605	1.2903
2.1014	1.8837	3.3307		0.8964	1.5850	1.1156	0.5656
			mean:	1.6416	1.6752	0.8131	1.4848

А	В	С		B/A	C/A	A/B	B/C
3.8816	2.2237	3.5034		0.5729	0.9026	1.7456	0.6347
3.4189	3.6334	4.4136		1.0627	1.2909	0.9410	0.8232
1.8736	3.4878	6.2357		1.8615	3.3282	0.5372	0.5593
2.7661	8.5963	4.0573		3.1077	1.4668	0.3218	2.1187
2.7887	3.5317	7.1290		1.2664	2.5564	0.7896	0.4954
2.2993	2.3495	6.8411		1.0218	2.9753	0.9786	0.3434
6.9564	8.9176	1.8384		1.2819	0.2643	0.7801	4.8507
1.9362	7.4160	2.3421		3.8302	1.2096	0.2611	3.1664
2.3554	3.5661	2.7637		1.5140	1.1733	0.6605	1.2903
2.1014	1.8837	3.3307		0.8964	1.5850	1.1156	0.5656
			mean:	1.6416	1.6752	0.8131	1.4848
			1/(B/A):			1.2299	

А	В	С		B/A	C/A	A/B	B/C
3.8816	2.2237	3.5034		0.5729	0.9026	1.7456	0.6347
3.4189	3.6334	4.4136		1.0627	1.2909	0.9410	0.8232
1.8736	3.4878	6.2357		1.8615	3.3282	0.5372	0.5593
2.7661	8.5963	4.0573		3.1077	1.4668	0.3218	2.1187
2.7887	3.5317	7.1290		1.2664	2.5564	0.7896	0.4954
2.2993	2.3495	6.8411		1.0218	2.9753	0.9786	0.3434
6.9564	8.9176	1.8384		1.2819	0.2643	0.7801	4.8507
1.9362	7.4160	2.3421		3.8302	1.2096	0.2611	3.1664
2.3554	3.5661	2.7637		1.5140	1.1733	0.6605	1.2903
2.1014	1.8837	3.3307		0.8964	1.5850	1.1156	0.5656
			mean:	1.6416	1.6752	0.8131	1.4848
			1/(B/A):			1.2299	
			(B/A)/(C/A)	0.9799			

А	В	С	log(B/A)	log(C/A)	log(A/B)	log(B/C)
3.8816	2.2237	3.5034	-0.5571	-0.1025	0.5571	-0.4546
3.4189	3.6334	4.4136	0.0608	0.2554	-0.0608	-0.1945
1.8736	3.4878	6.2357	0.6214	1.2024	-0.6214	-0.5810
2.7661	8.5963	4.0573	1.1339	0.3831	-1.1339	0.7508
2.7887	3.5317	7.1290	0.2362	0.9386	-0.2362	-0.7024
2.2993	2.3495	6.8411	0.0216	1.0903	-0.0216	-1.0687
6.9564	8.9176	1.8384	0.2484	-1.3308	-0.2484	1.5791
1.9362	7.4160	2.3421	1.3429	0.1903	-1.3429	1.1526
2.3554	3.5661	2.7637	0.4148	0.1599	-0.4148	0.2549
2.1014	1.8837	3.3307	-0.1094	0.4606	0.1094	-0.5699

А	В	С		log(B/A)	log(C/A)	log(A/B)	log(B/C)
3.8816	2.2237	3.5034		-0.5571	-0.1025	0.5571	-0.4546
3.4189	3.6334	4.4136		0.0608	0.2554	-0.0608	-0.1945
1.8736	3.4878	6.2357		0.6214	1.2024	-0.6214	-0.5810
2.7661	8.5963	4.0573		1.1339	0.3831	-1.1339	0.7508
2.7887	3.5317	7.1290		0.2362	0.9386	-0.2362	-0.7024
2.2993	2.3495	6.8411		0.0216	1.0903	-0.0216	-1.0687
6.9564	8.9176	1.8384		0.2484	-1.3308	-0.2484	1.5791
1.9362	7.4160	2.3421		1.3429	0.1903	-1.3429	1.1526
2.3554	3.5661	2.7637		0.4148	0.1599	-0.4148	0.2549
2.1014	1.8837	3.3307		-0.1094	0.4606	0.1094	-0.5699
			mean log- ratio	0.3414	0.3247	-0.3414	0.0166

А	В	С		log(B/A)	log(C/A)	log(A/B)	log(B/C)
3.8816	2.2237	3.5034		-0.5571	-0.1025	0.5571	-0.4546
3.4189	3.6334	4.4136		0.0608	0.2554	-0.0608	-0.1945
1.8736	3.4878	6.2357		0.6214	1.2024	-0.6214	-0.5810
2.7661	8.5963	4.0573		1.1339	0.3831	-1.1339	0.7508
2.7887	3.5317	7.1290		0.2362	0.9386	-0.2362	-0.7024
2.2993	2.3495	6.8411		0.0216	1.0903	-0.0216	-1.0687
6.9564	8.9176	1.8384		0.2484	-1.3308	-0.2484	1.5791
1.9362	7.4160	2.3421		1.3429	0.1903	-1.3429	1.1526
2.3554	3.5661	2.7637		0.4148	0.1599	-0.4148	0.2549
2.1014	1.8837	3.3307		-0.1094	0.4606	0.1094	-0.5699
			mean log- ratio	0.3414	0.3247	-0.3414	0.0166
			mean(B/A) ⁻¹	-0.3414			
			(B/A)/(C/A)	0.0166			

А	В	С		log(B/A)	log(C/A)	log(A/B)	log(B/C)
3.8816	2.2237	3.5034		-0.5571	-0.1025	0.5571	-0.4546
3.4189	3.6334	4.4136		0.0608	0.2554	-0.0608	-0.1945
1.8736	3.4878	6.2357		0.6214	1.2024	-0.6214	-0.5810
2.7661	8.5963	4.0573		1.1339	0.3831	-1.1339	0.7508
2.7887	3.5317	7.1290		0.2362	0.9386	-0.2362	-0.7024
2.2993	2.3495	6.8411		0.0216	1.0903	-0.0216	-1.0687
6.9564	8.9176	1.8384		0.2484	-1.3308	-0.2484	1.5791
1.9362	7.4160	2.3421		1.3429	0.1903	-1.3429	1.1526
2.3554	3.5661	2.7637		0.4148	0.1599	-0.4148	0.2549
2.1014	1.8837	3.3307		-0.1094	0.4606	0.1094	-0.5699
			mean log- ratio	0.3414	0.3247	-0.3414	0.0166
			mean(B/A) ⁻¹	-0.3414			
			(B/A)/(C/A)	0.0166			
			mean ratio:	1.4069	1.3837	0.7108	1.0168

А	В	С		log(B/A)	log(C/A)	log(A/B)	log(B/C)
3.8816	2.2237	3.5034		-0.5571	-0.1025	0.5571	-0.4546
3.4189	3.6334	4.4136		0.0608	0.2554	-0.0608	-0.1945
1.8736	3.4878	6.2357		0.6214	1.2024	-0.6214	-0.5810
2.7661	8.5963	4.0573		1.1339	0.3831	-1.1339	0.7508
2.7887	3.5317	7.1290		0.2362	0.9386	-0.2362	-0.7024
2.2993	2.3495	6.8411		0.0216	1.0903	-0.0216	-1.0687
6.9564	8.9176	1.8384		0.2484	-1.3308	-0.2484	1.5791
1.9362	7.4160	2.3421		1.3429	0.1903	-1.3429	1.1526
2.3554	3.5661	2.7637		0.4148	0.1599	-0.4148	0.2549
2.1014	1.8837	3.3307		-0.1094	0.4606	0.1094	-0.5699
			mean log- ratio	0.3414	0.3247	-0.3414	0.0166
			mean(B/A) ⁻¹	-0.3414			
			(B/A)/(C/A)	0.0166			
			mean ratio:	1.4069	1.3837	0.7108	1.0168
			1/(B/A):	0.7108			
			(B/A)/(C/A):	1.0168			

Another problem:

• The normal distribution calculated by taking the mean and standard deviation of compositional data will not stay on the simplex: the domain of a normal distribution is $\mathbb R$

Another problem:

• The normal distribution calculated by taking the mean and standard deviation of compositional data will not stay on the simplex: the domain of a normal distribution is $\mathbb R$

A better statement of the problem:

- Measures of difference are measures of distance.
- All of our statistics so far have boiled down to "all you need is S"

$$S = \sum \frac{(x_i - \bar{x})^2}{\sigma_i^2}$$

A better statement of the problem:

- Distances—d(x,X)—should have six properties (Aitchison, 1992):
 - 1. Positivity d(x,X) > 0 if X is not the same as x
 - Zero difference between equivalent compositions, d(x,X) = 0 if x=X
 - 3. Interchangeability f(x,X) = f(X,x)
 - 4. Scale invariance f(ax,aX) = f(x,X)
 - 5. Perturbation invariance
 - 6. Permutation invariance

The (easiest) solution

 If we want to keep using the normal distribution, and the well-developed statistical framework that goes along with it, we need to transform our data out of the simplex and into the real numbers

The solution

 If we want to keep using the normal distribution, and the well-developed statistical framework that goes along with it, we need to transform our data out of the simplex and into the real numbers

Additive log-ratio transform:

1. Evaluate ratios of components with a common component in the denominator

- ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁸Pb/²⁰⁴Pb

Additive log-ratio transform:

- Evaluate ratios of components with a common component in the denominator

 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb
- 2. Take the logarithm of each
 - log(²⁰⁶Pb/²⁰⁴Pb), log(²⁰⁷Pb/²⁰⁴Pb), log(²⁰⁸Pb/²⁰⁴Pb)

Additive log-ratio transform:

- Evaluate ratios of components with a common component in the denominator

 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb
- 2. Take the logarithm of each
 - log(²⁰⁶Pb/²⁰⁴Pb), log(²⁰⁷Pb/²⁰⁴Pb), log(²⁰⁸Pb/²⁰⁴Pb)
- 3. Assume (or test that) the resulting log-ratios are normally distributed

The lognormal distribution

Consequences

- Since the additive log-ratio transformed data is normally distributed, proceed with your calculations as before, just evaluate statistics (mean, standard deviation, etc) on log-ratio data.
- When you're done, 'undo' the transform by evaluating an exponential:

exp(log(x/y)) = x/y

Consequences

- Log-normal distributions that are precise and far from zero look much like normal distributions, and can be assigned symmetric ±2σ confidence intervals.
- Those that are close to zero and less precise have asymmetric probability distribution functions.

More consequences

 The linear regression technique that we used before does not work for data plotted as isotope ratios. This goes for linear arrays in isotope ratio space, like isochrons and mixing lines.

More consequences

- The linear regression technique that we used before does not work for data plotted as isotope ratios. This goes for linear arrays in isotope ratio space, like isochrons and mixing lines.
- The answer is to transform the data into **logratio space**, where x- and y-variables can be given multivariate normal distributions, then perform non-linear regression.